AAKC University of "D 2094
BRISTOL VC |‘In 2024

S

Learning-based Video Compression
From T'V to the Metaverse

Prof. David Bull

Visual Information Lab. and Director MyWorld, University of Bristol

9 Dec 2024 @ Tokyo, Japan




About Me

k Professor in Signal Processing, UoB
k Founder Director, Bristol Vision Institute
k Director, MyWorld, UK Strength in Places Fund

k& Author, Bull and Zhang, Intelligent Image and
Video Compression, Academic Press, 2021




Bristol Vision Institute

K Formed in 2008. o P
. O Conte
K Hosting some 160 researchers. Human Vision I o:
O s

K An intellectual landscape and practical O Movement nd rieacion

facilities for vision research. Von o o
K Facilitates engineers and scientists Bristol Vision Institute. YN NEV N S

working together with experts in

medicine and creative arts. ——

K One of the largest inter-disciplinary

groups in Europe.

. Machine Vi:
¥ Successful - attracting research acneEen

income, stimulating new relationships
and creating commercial impact.




MyWorld

%

RRKRRKRKRKRKRKERK

A £30m investment under the UKRI Strength
in Places Fund. Exploiting the production,
technology and research strengths of the West
of England’s creative sector.

25 new major international partnerships.
Additional funding leveraged ~£29M.

368 businesses supported to date.

298 jobs created.

112,000 members of public engaged.
2036 individual learners.

22 awards, prizes and prestigious lectures.
129 academic outputs.

Unc

MEASURING
THE EXPERIENCE

tanding

audiences

namic

ption and
ware

DELIVERING
THE EXPERIENCE

DESIGNING
THE EXPERIENCE

Exploiting new
delivery methods

Exploiting new
formats

Innovative

PRODUCING
THE EXPERIENCE




The Challenges of Video Compression

¥ Huge amounts of video content consumed via steaming and social media: e.g. NETFLIX and TikTok.
k¥ Significantly increased demand for more immersive services, e.g. UHD/HFR/HDR, XR and 360°.
¥ Consistent growth in the number of the global Internet users - 5.3bn in 2023.
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Example: Real-time Volumetric Video Delivery

[VIDEO] Live volumetric video delivery into the metaverse (https://condense.live).


https://fan-aaron-zhang.github.io/videos/condense_demo.mp4
https://condense.live

A Video Compression Framework

¥ Motion model: motion estimation/compensation, advanced motion models, optical flows.
i Representation: transforms, feature extraction.
¥ Quantisation and entropy coding: data compression for residual, latent or models.
¥ Enhancement: pre- and post-processing, super resolution.
¥ Quality assessment: for rate-distortion optimisation (encoder) or QoE prediction.
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Video Coding Standards

K VVC VTM achieves an average 29% bit rate saving against AOM AV1.
K The latest MPEG JVET test model ECM outperforms VTM by more than 25% in BD-rate saving.
¥ The new AOM codec AVM offers a 20%+ coding gain over AV1 libaom.
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[Nguyen and Marpe, 2021] “Compression efficiency analysis of AV1, VVC, and HEVC for random access applications”, APSIPA Transactions on Signal
and Information Processing.

[Seregin et al., 2024] “JVET AHG report: ECM software development (AHG6)”, JVET-AI0006.



Textures and Video Coding

Three cues in With Gaussian noise With Gaussian noise With Gaussian noise
a grey background (b =0,0=0.001) (u=0,0=0.0.01) (bt =0,0=0.03)

Quantisation Parameter (QP) | 22 27 32 37 42

Static textures (bpp) 0.0278 0.0111  0.0051 0.0025 0.0012
Mixed textures (bpp) 0.2301 0.0684 0.0287 0.0133 0.0066
Dynamic textures (bpp) 0.3463 0.1904 0.0969 0.0473 0.0235

HEVC HM 16.4; Main Profile; Random access mode; BVI-Texture; 300 frames encoded. .



Correlation between MSE/PSNR and Subjective Scores
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Textures and Video Coding - Static Textures

[VIDEO] Left: original texture. Right: warped texture. Middle: Absolute difference between left and right.


https://fan-aaron-zhang.github.io/videos/waterfall_warping_demo.mp4

Textures and Video Coding - Dynamic Textures

[VIDEO] Left: original texture. Right: synthesised texture. Middle: Absolute difference.


https://fan-aaron-zhang.github.io/videos/synthesis_demo.mp4

An Analysis-Synthesis Video Compression Framework

Video In
¢ Non-texture
Regions Region regions
e 1 > § 4
Cli 1
Static Textures Dynamic
textures
v
Texture Dynamic Texture
Warping Analysor
% a] %
v
2l |§ 5
= [ o
B ale| 1% g Y
o S & & 4]
S g s 18 2 18 X
8/ =|8| I3 a2 3 8
=3 c | © ? | o o
8 S | 2 | k|
SHER -
&2
| 2 | €
A y | A 2 <
| Video Quality Assessment Side info

Key frames

Bit stream

Channel

Side information

Reconstructed frames

Warping maps

Motion parameters

Texture
MC

Synthesis maps

Reconstructed frames

Synthesiser

Warped frames

Dynamic
Texture

Video out
E—

[Zhang and Bull, 2011] “A parametric framework for video compression using region-based texture models”, IEEE Journal of Selected Topics in Signal

Processing.



Compression Results based on HEVC

QP = 22, Overall DMOS: -0.2 QP = 22, Overall ARate: -15.8%
Frame 2, DMOS: -0.6 L0* Frame?2, ARate: -51.7%

Rate (Bits)

20 40 60 80 100

. . Frame No. Frame No.
[VIDEO] Left: HEVC; Right: HEVC+Synthesis; Middle: Synthesis maps and RD stats.



https://fan-aaron-zhang.github.io/videos/water_demo_HEVCSynth.mp4
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Deep Video Compression: Overview

Background

i Deep neural networks now offer tractable solutions to many image processing problems.
K They are being increasingly applied in image/video compression, demonstrating significant coding gains.
¥ But often at the expense of increased complexity or latency.

Al-based video compression

¥ Training databases.

¥ Deep video coding tools for standard codec enhancement:

e.g., post processing, in-loop filtering and resolution adaptation.
¥ End-to-end learned video codecs: e.g., DVC, DCVC codecs.
2



Deep Video Compression: Training Databases

Motivation
K DVC demands volumes of training materiel much greater than other machine learning methods.
K They must include diverse content covering different formats and video texture types.

K Most learning-based coding methods are currently trained on databases designed for image/video processing or
computer vision applications.

¥ These training databases cannot ensure network generalisation or optimum performance for DVC.

Popular training databases for DVC

K DIV2K [Agustsson et al., 2019]: contains 1000 RGB images and was developed for super-resolution.
k£ CD [Liu et al., 2017]: collects 29 video sequences from LIVE VQA, MCL-V and TUM 1080p.

kK REDS [Nah et al., 2019a]: contains 300 video clips, and was developed for super-resolution.

K Video Set [Wang et al., 2017]: includes 880 source videos, and was developed for quality assessment.

¥ HIF [Li et al., 2019]: contains 182 video sequences, and was developed for deep video coding.



BVI-DVC: A Training Database for Deep Video Compression

i BVI-DVC contains 800 10bit video sequences at various spatial resolutions from 270p to 2160p.
¥ It covers various video texture types, including static textures and dynamic textures.
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[Ma et al., 2021] D. Ma et al., BVI-DVC: A Training Database for Deep Video Compression, IEEE Trans. in Multimedia, 2021.



Feature Coverage and Distribution

Training Databases | Image or Video? | Seq Number | Max Resolution | Bit Depth | Texture Diversity?

DIV2K [Agustsson and Timofte, 2017] | Image [ 1000 | t152p | 8 | No
CD [Liu et al., 2017] | Video | 29 | 1080p | 8 | No

VideoSet [Wang et al., 2017] | Video | 80 | t080p | 8 | No

REDS [Nah et al., 2019b] | Video | 800 | 720p | 8 | No

HIF [Li et al., 2019] | Video | 182 | tosp | 8 | No

BVI-DVC | Video | 80 | 2t60p | 10 | Yes

K Features [Winkler, 2012]:
¥ Sl - spatial information.
¥ TI - temporal information.
¥ CF - colourfulness.

CF
[Winkler, 2012] “Analysis of public image and video databases for quality assessment”, IEEE Journal of Selected Topics in Signal Processing.



BVI-DVC vs Existing Training Databases for DVC

K BVI-DVC has been compared to five databases for DVC: DIV2K, REDS, CD, Video Set and HIF.
¥ The evaluation was conducted for four CNN-based coding tools based on HEVC HM 16.20 and JVET CTC.
K Ten popular network architectures were used for evaluation.

K The coding gains were calculated against the original HEVC HM.
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K BVI-DVC is used in MPEG JVET for developing VVC neural network based tools .



BVI-AOM

K BVI-AOM extends BVI-DVC with additional content, e.g. dark or high-contrast scenes.

k£ BVI-AOM offers improved performance (up to 2.98p.p.), with more flexible licensing terms.
K A collaboration with Netflix (US), the database is available for public downloading.

K Experimental setup: two coding tools, two networks, four quality metrics and AOM CTCs.
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[Nawata et al., 2024] “BVI-AOM: A New Training Dataset for Deep Video Compression Optimization”, IEEE VCIP.



Conventional Coding Tools Enhancement

K Deep learning techniques have been applied to the improve coding efficiencey of various existing coding tools.

k& Offering better performance when integrated into the enhancement modules.
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Enhancement of Coding Tools

K Post-processing (PP) and in-loop filtering (ILF) provide more consistent coding gains compared to other

coding modules.
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ViSTRA: A Coding Framework based on Deep Learning

K VISTRA trades off the relationship between resolutions and quantisation within the coding loop.

¥ Adaptation for spatial resolution (SRA), frame rate (for HFR only) and effective bit depth (EBDA).

K Resolution up-sampling is achieved through CNN-based super resolution (MSRResNet).

K Machine learning inspired QRO: spatial resolution adaptation based on quantisation and video content.
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Host Encoder
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[Afonso et al., 2018] “Video Compression based on Spatio-Temporal Resolution Adaptation”, IEEE Trans. on CSVT.
[Zhang et al., 2021] “VISTRA2: Video coding using spatial resolution and effective bit depth adaptation”, Signal Processing: Image Communication.



Perceptual Quality Comparison: ParkRunning

[VIDEO] Topleft: Reconstructed video of sequence ParkRunning for the HM anchor. Bottomleft: The corresponding video for VISTRA-HM at the same
bitrate. Middle: The video for the enlarged block of the top left video. Right: The video for the enlarged block of the bottom left video (the same location).


https://fan-aaron-zhang.github.io/videos/demo_running.mp4

Al-based Coding Tools: links to Existing Standards

MPEG JVET are developing an Al-optimised video codec, NNVC, on top of VVC VTM 11.

NNVC (v-10.0) offers up to 14% coding gains over VTM, but with a high decoder complexity increase.
AOM is also considering neural network based solutions (complexity lower than 2k MACs/pixels).

One of the best AVM tools offers a 3.9% BD-rate saving in PSNR-Y, with a complexity of 1500 MACs/pixel.
Most of these tools are based on post-processing (or in-loop filtering) and/or super-resolution.

RRRKRREKR

The trade-off between complexity and performance remains a challenge for this type of solution.

[Galpin et al., 2024] “JVET AHG report: NNVC software development AhG14”, JVET-AJ0014.
[Joshi et al., 2023] “Switchable CNNs for in-loop restoration and super-resolution for AV2”, SPIE2023.



Learned Video Compression via End-to-end Optimisation

¥ Traditional codec tool enhancements remains the dominant approach currently.

¥ However, inspired by the success of end-to-end learned image compression [Ballé et al., 2017, 2018]. significant
advances in end-to-end learned video codecs are emerging, that are holistically optimisable.
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[Ballé et al., 2017] “End-to-end optimized image compression”, International Conference on Learning Representations.



End-to-End Learned Video Codecs

k DVC [Lu et al., 2019] was the first end-to-end deep video compression model.
k Replaces the conventional video coding framework with several neural networks.
k& Achieves a performance similar to X265 (veryfast preset).
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Source of figures: [Lu et al., 2019] Lu et al., “DVC: An end-to-end deep video compression framework”, IEEE/CVF CVPR, 2019.



Deep Contextual Video Compression (DCVC)

K A series of neural video codecs that offer similar RQ performance to standard video codecs.
k& Shift from a residue coding - to a conditional coding-based framework.

Residue coding Conditional coding

777777777777777 X,: predicted frame in RGB domain N %,: context in feature domain

|
e f Context

Xt-1 -1

Commonly-used residue coding-based Our deep contextual
video compression \ H ./ video compression

Source of figure: [Li et al., 2021] “Deep contextual video compression”, NeurlPS.



DCVC Codecs

Kk DCVC-DC: diverse contexts [Li et al., 2023] - better than ECM LD (RGB).
K DCVC-FM: feature modulation [Li et al., 2024] - better than ECM LD (RGB and YUV) .
kK DCVC-LCG: long-term temporal context gathering [Qi et al., 2024] - 11.3% better than ECM LD (YUV).

x¢: Frame (Input) X¢: Frame (Reconstructed) ¥y: Motion (Reconstructed) F;: Reference Feature C,: Temporal Context

Long-term
Temporal Context
Gathering

2:—1 3? J?tfl 7?
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eoe
codlng Generanon codlng coding Generation coding
Xt—l 17: x: Xt X¢-1 D¢ Xt

Short-term feature propagation

(a) Previous methods (b) Our DCVC-LCG

Short-term feature propagation with long-term temporal context gathering

Source of figure: [Qi et al., 2024] “Long-term Temporal Context Gathering for Neural Video Compression”, ECCV.



Limitations of Al-based Video Coding Methods

Coding performance
k£ Reported results for (most) learned video codecs are not based on standard CTCs.
k Conventional video codecs (RA mode) still lead in performance.

Complexity Issues
k Pre-trained generic models typically require large model capacity.
k£ This leads to significantly increased (decoding) complexity and large model sizes.

Non-standard pipelines
k& Existing neural video codecs adopt diverse pipelines/network architectures.
k£ Compatibility is essential in video coding (standardisation) and convergence is required.



Conventional and Learned Video Codecs - Benchmarking

¥ Configuration: low delay, YUV420 and JVET/AOM test sequences.

¥ Hardware: PC with single CPU (Intel i7-12700) and GPU (NVIDIA 3090).

BD-rate | BD-rate | Encoding | Decoding

(PSNR) | (VMAF) time time
libaom 0% 0% 1x 1%
DCVC-DC | -11.2% | -31.1% 0.008x | 13.180x
VTM-LDP | -13.4% | -18.2% 1.032x 2.723x
VTM-LDB | -19.2% | -22.5% 1.502x 2.675x
DCVC-FM | -20.8% | -33.1% 0.012x | 20.735x
AVM | -21.4% | -25.6% | 12.301x 2.246 %
ECM-LDP | -29.0% | -30.4% | 10.704x | 21.394x
ECM-LDB | -33.9% | -34.2% | 16.106x | 21.725x

[Teng et al., 2024] “Benchmarking Conventional and Learned Video Codecs with a Low-Delay Configuration.”, IEEE VCIP.
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When will Al-based Methods be Acceptable?

Architecture and Complexity reduction
ke Significant complexity reduction, especially at the decoder.
ke Performance should be maintained with low-complexity models.
ke Architectural convergence for standardisation.

Coding gains
ke More significant and consistent coding gains over best standard codecs (ECM/AVM).

Rate quality optimisation
ke Exploitation of perceptual redundancy during coding.
ke Better quality assessment methods and loss functions.
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Model Compression and Knowledge Distillation - e.g. ISR

K Model complexity can be significantly reduced by model compression.

K Model performance after compression can be further improved through knowledge distillation.
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[Jiang et al., 2024c] “Compressing deep image super-resolution models”, PCS.
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[Jiang et al., 2024a] “MTKD: multi-teacher knowledge distillation for image super-resolution”, ECCV.



MTKD: Results

SwinIR vs SwinIR_lightweight [Liang et al., 2021] (90% complexity reduction)

HR Full Compact MT
PSNR/SSIM 24.81/.7928 24.20/.7542 24.93/.7865

KD AT FAKD MTKD (QOurs)
24.19/.7533 24.19/.7530 24.14/.7526 24.34/.7622



RTSR: Real-Time SR for Compressed Content

Extend from image super-resolution to video compression (AV1).
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[Jiang et al., 2024b] “RTSR: A Real-Time Super-Resolution Model for AV1 Compressed Content”, submitted to ISCAS 2025.
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End-to-end Learned Video Codecs: Complexity Reduction

1. The multi-stage optimisation of learnt video codecs vs the global pruning objectives.

2. Split the distillation of sub-modules into multi-stages to regularise the student model.
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Evaluation Results - Complexity vs Performance
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Motion Models in Video Compression

K Accurate motion estimation is key in exploiting the temporal redundancy within videos.
¥ Video frame interpolation techniques offer potential solutions for improved motion modelling.
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Perceptually-oriented VFI: LDMVFI

K L1/L2/VGG loss does not correlate with VFI perceptual quality.
kK Diffusion models have shown remarkable performance in generating perceptually-optimised images.
K We tailor latent diffusion models for VFI to achieve superior perceptual quality.
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[Danier et al., 2024] “LDMVFI: Video Frame Interpolation with Latent Diffusion Models”, AAAI.



LDMVFEI: Performance

Middlebury UCF-101 DAVIS VFITex RT  #P
LPIPS, FIoLPIPS, FID, LPIPS, FIoLPIPS| FID, LPIPS| FIoLPIPS, FID| LPIPS| FloLPIPS, FID| (sec) (M)
BMBC 0023 0037 12974 0034 0045 33171 0.125  0.185 15354 0220 0282 50393 051 11.0

AdaCoF 0.031 0.052 15.633  0.034 0.046 32783  0.148 0.198 17.194  0.204 0.273 42255 0.01 218
IFRNet 0.020 0.039 12.256  0.032 0.044 28.803 0.114 0.170 14.227  0.200 0.273 42.266 0.02 5.0
VFlformer  0.031 0.065 15.634  0.039 0.051 34112 0.191 0.242 21.702 OOM OOM OOM 174 5.0

ST-MFNet N/A N/A N/A 0.036 0.049 34.475  0.125 0.181 15.626  0.216 0.276 41971 014 210
FLAVR N/A N/A N/A 0.035 0.046 31.449  0.209 0.248 22,663 0.234 0.295 56.690 0.02 421
MCVD 0.123 0.138 41.053 0.155 0.169 102.054  0.247 0.293 28.002 OOM OOM OOM 5255 273

LDMVFI 0.019 0.044 16.167  0.026 0.035 26.301  0.107 0.153 12554 0.150 0.207 32.316 848 439.0

[Video] Visual comparison between different VFI models.

Overlayed Inputs GT BMBC VFIformer IFRNet ST-MFNet LDMVFI (Ours)


https://fan-aaron-zhang.github.io/videos/ldmvfi_demo_short.mp4

Outline
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Advanced Representation Models

k& Existing end-to-end learned video codecs suffer from high computational complexity.
kK Amortised inference: hyperparameters are fixed and shared across diverse contents.

K Therefore more sophisticated architectures are required.
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Neural Representation for Videos (NeRV)

Implicit Neural Representations offer a promising solution, overfitting the content during learning.
Neural Radiance Field (NeRF): f : f(z,y,2,0,d) = (7,9,b, 0).

Neural Representation for Videos (NeRV): f : f(z,y,t) = (r, g, b).

NeRV-based video codecs can offer very fast decoding speed.

However, existing INR models (e.g., NeRV [Chen et al., 2021] and HNeRV [Chen et al., 2023]) are not
competitive against standard or other E2E learned codecs.

RRKRKERK

Video Video
4

J

Souce of figure: [Chen et al., 2021] “NeRV: Neural representations for videos”, NeurlPS.



HiNeRV: Hierarchical Encoding-based Neural Representation

K A new upsampling layer with bilinear interpolation and hierarchical encoding of feature grids.
K A unified representation of frame- and patch-wise INR by adding padding for acceleration.

K A refined training pipeline, with pruning- & quantisation-aware fine-tuning.

N x HiNeRV Blocks
N

HiNeRV Block

Bilinear
L ?? >

1*]
%

MLP/Conv
000
MLP/Conv

« fosfnafzsfag) o, 11,1]o, 1]1,1}

Local
Grid
MLP/Conv

|

(i,5,1)

[Kwan et al., 2023] “Video Compression with Hierarchical Encoding-based Neural Representation”, NeurlPS.



HiNeRV: Performance

K HiNeRV is the first INR-based codec that outperforms HEVC x265 (verysiow).
¥ 1t also outperforms existing NeRV-based video codecs with up to 70% bit rate-savings.
K and offers fast decoding speed - up to 35FPS.

Dataset Metric x265 (veryslow) HM (RA) DCVC DCVC-HEM VCT NeRV HNeRV
UVG PSNR -38.66% 7.54%  -43.44% 25.23% -34.28% -7412% -72.29%
MS-SSIM -62.70%  -41.41%  -34.50% 49.03% -23.69% -73.76% -83.86%
MCL-JCV PSNR -23.39% 31.09% -24.59% 35.83% -17.03% -80.19% -66.56%
MS-SSIM -44.12% -2.65% -17.32% 80.73% 12.10% -82.28% -79.42%

NeRV HNeRV.
31.4dB PSNR@0.099bpp 31.4dB PSNR@0.101bpp



Improving Quantisation and Entropy Coding

K Quantization creates lossy representations of input videos.
K Accurate entropy modelling is also key to high compression ratios.
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NVRC: Neural Video Representation Compression
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[Kwan et al., 2024a] “NVRC: Neural Video Representation Compression”, NeurlPS.



NVRC: Performance

Color Space  Metric x265 (veryslow) HM (RA) VTM(RA) DCVC-HEM DCVC-DC  HiNeRV C3  HNeRV-Boost
RGE 4:4:4 PSNR -74.02%  -51.00% -24.34% -41.30% -32.05% -50.73% -67.93% -66.78%
o MS-SSIM -80.79%  -67.61% -50.08% -7.91% -12.58%  -44.69% - -78.21%
YUV 4:2:0 PSNR -62.71%  -34.83% -1.03% - -62.28% - - -
- MS-SSIM -59.49%  -38.45% -15.38% - -70.23% - - -
WG uwe 50- we uwe
39.0 — ju 4
4254 0.990
375
g 25 265 (erysiow guoo z
536'0 = H;G?r;nd&;{m‘acc'ess} EZE foo7s
2 1 \é?\jér:;:nmaccess? Zars| 2
34.5 —m- DCVC-DC i f - X265 (veryslow)
fro e b | ooeo] |
33.01 ¢ ,’ —4— HNeRV-Boost h —m- DCVC-DC t
/ —e— NVRC | —e— NVRC |
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[VIDEOQ] Visual Comparison between HM and NVRC.


https://fan-aaron-zhang.github.io/videos/nvrc_demo3_new.mp4

PNVC: Towards Practical Neural Video Compression

¥ INR-based video codecs typically represent an entire video or a dataset with a single monolithic model.
¥ This requires processing a large number of frames in each encoding, resulting in a high system latency.
¥ PNVC: a practical neural video coding framework, enabling flexible coding configurations (LD and RA).

Xt
L
( HH
...I ...... I...
¥ v
Motion
Estimation }" __-‘ L0 Bt o
o . [ o
Co
"’Em g L

[Gao et al., 2025] “PNVC: Towards Practical INR-based Video Compression”, AAAI.



PNVC: Performance

k£ Well-rounded performance across multiple dimensions.
¥ 5%+ gain over VTM (LD) in PSNR and MS-SSIM.

¥ 10%-+ gain over HiNeRV in PSNR and MS-SSIM.

K 20+FPS decoding speed for HD (1080P).

K Flexible coding/delay configurations (LD and RA).

CONVENTIONAL NEURAL
Latency

Latency

FPS (Dec) FPS (Dec)

Latency

FPS (Dec)

PNVC

Latency

FPS (Dec)

—o— HM (LD)
—e— VTM (LD)
o HM (RA)
VTM (RA)
~— DCVC-HEM
~e~ DCVC-DC
~o— HiNeRV
HNeRV-Boost
ours (LD)
~o— Ours (RA)



MV-HiNeRV - Extending HiNeRV to Immersive Videos

K MV-HiNeRV [Kwan et al., 2024b] extends HiNeRV to the compression of immersive/volumetric videos.
K It learns hierarchical feature grids per view, and shares the learned network parameters among all views.
K This enables the model to effectively exploit the spatio-temporal and the inter-view redundancy.

K& MV-HiNeRV has achieved significant coding gains (up to 72.33%) over MPEG TMIV (based on VVenc).

o),

Shared
MV HiNeRV \ayers

HiINeRV layers

HiNeRV MV-HiNeRV



MV-HiNeRV: Performance

BD-rate (%) | B02 | DO1 | EO1 | J02 | Jo4 | WO1 | Overall
PSNR | -17.60 | -65.93 | -36.59 | -59.96 | -80.03 | -35.48 | -49.27
IV-PSNR | -38.11 | -61.08 | -6.28 | -70.21 | -72.33 | -33.50 | -46.92

Best reference TMIV @ 20.1 Mbps MV-HiNeRV @ 9.06 Mbps
" L) i ]
I

!

LES CAMANEE 100"

[Kwan et al., 2024b] “Immersive Video Compression using Implicit Neural Representations”, PCS.
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Summary and Future Work

Learning-based video coding: Hope or Hype?

K Deep learning has made important contributions to video compression and quality assessment.

K But significant issues remain include coding performance, complexity, and non-standard pipelines.

K Generative methods: enable super-resolution and motion interpolation tools for near term advances.

¥ INR-based frameworks: potential for the best trade-off between complexity, performance and practicality.
¥ Complexity reduction: enabled by model compression and knowledge distillation.

Future work

k Performance: demonstrate significant coding gains over ECM/AVM with lower model complexity.

¥ Evaluation: new metrics and benchmarking methods to compare techniques with varying performance
characteristics, consistency and artefacts.

K Convergence: stable architectures to drive investment in standards and hardware.

R

Compatibility: with low cost integrated hardware: NPU and TPU acceleration.
K Datasets: relevant, diverse and extensive,
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