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Bristol Vision Institute

Formed in 2008.

Hosting some 160 researchers.

An intellectual landscape and practical
facilities for vision research.

Facilitates engineers and scientists
working together with experts in
medicine and creative arts.

One of the largest inter-disciplinary
groups in Europe.

Successful - attracting research
income, stimulating new relationships
and creating commercial impact.
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MyWorld
A £30m investment under the UKRI Strength
in Places Fund. Exploiting the production,
technology and research strengths of the West
of England’s creative sector.

25 new major international partnerships.

Additional funding leveraged ∼£29M.

368 businesses supported to date.

298 jobs created.

112,000 members of public engaged.

2036 individual learners.

22 awards, prizes and prestigious lectures.

129 academic outputs.
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The Challenges of Video Compression

Huge amounts of video content consumed via steaming and social media: e.g. NETFLIX and TikTok.

Significantly increased demand for more immersive services, e.g. UHD/HFR/HDR, XR and 360°.

Consistent growth in the number of the global Internet users - 5.3bn in 2023.

Source of figures: Cisco Annual Internet Report 2018-2023.
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Example: Real-time Volumetric Video Delivery

[VIDEO] Live volumetric video delivery into the metaverse (https://condense.live).

https://fan-aaron-zhang.github.io/videos/condense_demo.mp4
https://condense.live
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A Video Compression Framework
Motion model: motion estimation/compensation, advanced motion models, optical flows.

Representation: transforms, feature extraction.

Quantisation and entropy coding: data compression for residual, latent or models.

Enhancement: pre- and post-processing, super resolution.

Quality assessment: for rate-distortion optimisation (encoder) or QoE prediction.
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Overview
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AI-based Video Compression

Reducing Complexity

Motion Models

Representation Models

Conclusion



9/67

Outline

Video Compression - pre AI

AI-based Video Compression

Reducing Complexity

Motion Models

Representation Models

Conclusion



10/67

Video Coding Standards
VVC VTM achieves an average 29% bit rate saving against AOM AV1.

The latest MPEG JVET test model ECM outperforms VTM by more than 25% in BD-rate saving.

The new AOM codec AVM offers a 20%+ coding gain over AV1 libaom.
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[Nguyen and Marpe, 2021] “Compression efficiency analysis of AV1, VVC, and HEVC for random access applications”, APSIPA Transactions on Signal
and Information Processing.

[Seregin et al., 2024] “JVET AHG report: ECM software development (AHG6)”, JVET-AI0006.
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Textures and Video Coding

Three cues in
a grey background

With Gaussian noise
(µ = 0,σ = 0.001)

With Gaussian noise
(µ = 0,σ = 0.0.01)

With Gaussian noise
(µ = 0,σ = 0.03)

Quantisation Parameter (QP) 22 27 32 37 42

Static textures (bpp) 0.0278 0.0111 0.0051 0.0025 0.0012
Mixed textures (bpp) 0.2301 0.0684 0.0287 0.0133 0.0066
Dynamic textures (bpp) 0.3463 0.1904 0.0969 0.0473 0.0235

HEVC HM 16.4; Main Profile; Random access mode; BVI-Texture; 300 frames encoded.
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Correlation between MSE/PSNR and Subjective Scores
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Textures and Video Coding - Static Textures

[VIDEO] Left: original texture. Right: warped texture. Middle: Absolute difference between left and right.

https://fan-aaron-zhang.github.io/videos/waterfall_warping_demo.mp4
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Textures and Video Coding - Dynamic Textures

[VIDEO] Left: original texture. Right: synthesised texture. Middle: Absolute difference.

https://fan-aaron-zhang.github.io/videos/synthesis_demo.mp4
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An Analysis-Synthesis Video Compression Framework
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[Zhang and Bull, 2011] “A parametric framework for video compression using region-based texture models”, IEEE Journal of Selected Topics in Signal

Processing.
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Compression Results based on HEVC

[VIDEO] Left: HEVC; Right: HEVC+Synthesis; Middle: Synthesis maps and RD stats.

https://fan-aaron-zhang.github.io/videos/water_demo_HEVCSynth.mp4
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Deep Video Compression: Overview

Background
Deep neural networks now offer tractable solutions to many image processing problems.

They are being increasingly applied in image/video compression, demonstrating significant coding gains.

But often at the expense of increased complexity or latency.

AI-based video compression
Training databases.

Deep video coding tools for standard codec enhancement:
e.g., post processing, in-loop filtering and resolution adaptation.

End-to-end learned video codecs: e.g., DVC, DCVC codecs.

Perceptual quality assessment.



19/67

Deep Video Compression: Training Databases

Motivation
DVC demands volumes of training materiel much greater than other machine learning methods.

They must include diverse content covering different formats and video texture types.

Most learning-based coding methods are currently trained on databases designed for image/video processing or
computer vision applications.

These training databases cannot ensure network generalisation or optimum performance for DVC.

Popular training databases for DVC
DIV2K [Agustsson et al., 2019]: contains 1000 RGB images and was developed for super-resolution.

CD [Liu et al., 2017]: collects 29 video sequences from LIVE VQA, MCL-V and TUM 1080p.

REDS [Nah et al., 2019a]: contains 300 video clips, and was developed for super-resolution.

Video Set [Wang et al., 2017]: includes 880 source videos, and was developed for quality assessment.

HIF [Li et al., 2019]: contains 182 video sequences, and was developed for deep video coding.
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BVI-DVC: A Training Database for Deep Video Compression
BVI-DVC contains 800 10bit video sequences at various spatial resolutions from 270p to 2160p.

It covers various video texture types, including static textures and dynamic textures.

(a) Animal (b) Wood (c) Leaves (d) Mountain (e) Myanmar

(f) Venice (g) Tall Buildings (h) Traffic (i) Market (j) Ferris Wheel

(k) Cross Walk (l) Plasma (m) Firewood (n) Smoke (o) Water

[Ma et al., 2021] D. Ma et al., BVI-DVC: A Training Database for Deep Video Compression, IEEE Trans. in Multimedia, 2021.
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Feature Coverage and Distribution
Training Databases Image or Video? Seq Number Max Resolution Bit Depth Texture Diversity?

DIV2K [Agustsson and Timofte, 2017] Image 1000 1152p 8 No

CD [Liu et al., 2017] Video 29 1080p 8 No

VideoSet [Wang et al., 2017] Video 880 1080p 8 No

REDS [Nah et al., 2019b] Video 300 720p 8 No

HIF [Li et al., 2019] Video 182 1080p 8 No

BVI-DVC Video 800 2160p 10 Yes

Features [Winkler, 2012]:

SI - spatial information.

TI - temporal information.

CF - colourfulness.

3

TABLE I: Key features of eight training databases including BVI-DVC.

Features ImageNet [45] DIV2K [4] BSDS [50] Vimeo [51] CD [6] REDS [5] UCF101 [56] BVI-DVC

Image or Video? Image Image Image Video Video Video Video Video

Seq Number 14M 1000 500 89,800 29 300 13,320 800

Max Resolution 2848p 1152p 321p 256p 1080p 720p 240p 2160p

Bit depth 8 8 8 8 8 8 8 10

Various textures? No No No No No No No Yes

(a) Animal (b) Wood (c) Leaves (d) Mountain (e) Myanmar

(f) Venice (g) Tall Buildings (h) Traffics (i) Market (j) Ferris Wheel

(k) Room (l) Store (m) Bookcase (n) Toy (o) Scarf

(p) Cross Walk (q) Plasma (r) Firewood (s) Smoke (t) Water

Fig. 1: Sample frames of 20 example sequences from the BVI-DVC database.

Video Group-Tampere University database [76]. These se-
quences contain natural scenes and objects [5], e.g. mountains,
oceans, animals, grass, trees, countryside, city streets, towns,
buildings, institutes, facilities, parks, marketplaces, historical
places, vehicles and colorful textured fabrics. Different texture
types such as static texture, dynamic texture2, structure content
and luminance-plain content are also included.

All these sequences are progressive-scanned at a spatial
resolution of 3840×2160, with frame rates ranging from 24 fps
to 120 fps, a bit depth of 10 bit, and in YCbCr 4:2:0 format.
All are truncated to 64 frames without scene cuts, using the
segmentation method described in [77]. To further increase
data diversity and provide data augmentation, the 200 video
clips were spatially down-sample to 1920×1080, 960×540
and 480×270 using a Lanczos filter of order 3. This results
in 800 sequences at four different resolutions. Fig. 1 shows
the sample frames of twenty example sequences. The primary
features of this database are summarised in Table I alongside
those for the other seven databases [4–6, 45, 50, 51, 56]
mentioned above.

Three low-level video features of all 200 UHD source
sequences, spatial information (SI), temporal information (TI)
and colourfulness (CF) have been also calculated and plotted
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Fig. 2: Scatter plots of three video features for 200 UHD source
sequences in the BVI-DVC database.

in Fig. 2. The definitions of these feature can be found in
[67, 78]. It can be noted that the BVI-DVC database has a
relatively wide coverage for these three video features, which
indicates the diversity of the proposed database.

IV. EXPERIMENTS

In order to evaluate the training effectiveness of the pro-
posed BVI-DVC database in the context of video compres-
sion, ten network architectures [7–16, 79] were employed

[Winkler, 2012] “Analysis of public image and video databases for quality assessment”, IEEE Journal of Selected Topics in Signal Processing.
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BVI-DVC vs Existing Training Databases for DVC
BVI-DVC has been compared to five databases for DVC: DIV2K, REDS, CD, Video Set and HIF.

The evaluation was conducted for four CNN-based coding tools based on HEVC HM 16.20 and JVET CTC.

Ten popular network architectures were used for evaluation.

The coding gains were calculated against the original HEVC HM.
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BVI-DVC is used in MPEG JVET for developing VVC neural network based tools .
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BVI-AOM

BVI-AOM extends BVI-DVC with additional content, e.g. dark or high-contrast scenes.

BVI-AOM offers improved performance (up to 2.98p.p.), with more flexible licensing terms.

A collaboration with Netflix (US), the database is available for public downloading.

Experimental setup: two coding tools, two networks, four quality metrics and AOM CTCs.

BD-rate 
 (%, PSNR-Y)

BD-rate 
 (%, PSNR-YUV)

BD-rate 
 (%, VMAF)

BD-rate 
 (%, nVMAF)

0.5

1.5

2.5

3.5

1

3

5

7

1

3

5

7

0.5

1.5

2.5

3.5
PP

BVI-DVC
BVI-AOM

BD-rate 
 (%, PSNR-Y)

BD-rate 
 (%, PSNR-YUV)

BD-rate 
 (%, VMAF)

BD-rate 
 (%, nVMAF)

0.5
1.5

2.5
3.5

4.5

1
3

5
7

9
11

1
3

5
7

9
11

0.5
1.5

2.5
3.5

4.5
SR

BD-rate 
 (%, PSNR-Y)

BD-rate 
 (%, PSNR-YUV)

BD-rate 
 (%, VMAF)

BD-rate 
 (%, nVMAF)

0.5

1.5

2.5

3.5

1
3

5
7

9

1

3

5

7

9

0.5

1.5

2.5

3.5
EDSR

BD-rate 
 (%, PSNR-Y)

BD-rate 
 (%, PSNR-YUV)

BD-rate 
 (%, VMAF)

BD-rate 
 (%, nVMAF)

0.5
1.5

2.5
3.5

4.5

1
3

5
7

9

1

3

5

7

9

0.5

1.5

2.5

3.5
SwinIR

[Nawała et al., 2024] “BVI-AOM: A New Training Dataset for Deep Video Compression Optimization”, IEEE VCIP.
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Conventional Coding Tools Enhancement

Deep learning techniques have been applied to the improve coding efficiencey of various existing coding tools.

Offering better performance when integrated into the enhancement modules.
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Enhancement of Coding Tools

Post-processing (PP) and in-loop filtering (ILF) provide more consistent coding gains compared to other
coding modules.
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ViSTRA: A Coding Framework based on Deep Learning

ViSTRA trades off the relationship between resolutions and quantisation within the coding loop.

Adaptation for spatial resolution (SRA), frame rate (for HFR only) and effective bit depth (EBDA).

Resolution up-sampling is achieved through CNN-based super resolution (MSRResNet).

Machine learning inspired QRO: spatial resolution adaptation based on quantisation and video content.
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[Afonso et al., 2018] “Video Compression based on Spatio-Temporal Resolution Adaptation”, IEEE Trans. on CSVT.

[Zhang et al., 2021] “ViSTRA2: Video coding using spatial resolution and effective bit depth adaptation”, Signal Processing: Image Communication.



27/67

Perceptual Quality Comparison: ParkRunning

[VIDEO] Topleft: Reconstructed video of sequence ParkRunning for the HM anchor. Bottomleft: The corresponding video for ViSTRA-HM at the same
bitrate. Middle: The video for the enlarged block of the top left video. Right: The video for the enlarged block of the bottom left video (the same location).

https://fan-aaron-zhang.github.io/videos/demo_running.mp4
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AI-based Coding Tools: links to Existing Standards

MPEG JVET are developing an AI-optimised video codec, NNVC, on top of VVC VTM 11.

NNVC (v-10.0) offers up to 14% coding gains over VTM, but with a high decoder complexity increase.

AOM is also considering neural network based solutions (complexity lower than 2k MACs/pixels).

One of the best AVM tools offers a 3.9% BD-rate saving in PSNR-Y, with a complexity of 1500 MACs/pixel.

Most of these tools are based on post-processing (or in-loop filtering) and/or super-resolution.

The trade-off between complexity and performance remains a challenge for this type of solution.

[Galpin et al., 2024] “JVET AHG report: NNVC software development AhG14”, JVET-AJ0014.

[Joshi et al., 2023] “Switchable CNNs for in-loop restoration and super-resolution for AV2”, SPIE2023.
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Learned Video Compression via End-to-end Optimisation

Traditional codec tool enhancements remains the dominant approach currently.

However, inspired by the success of end-to-end learned image compression [Ballé et al., 2017, 2018]. significant
advances in end-to-end learned video codecs are emerging, that are holistically optimisable.

Published as a conference paper at ICLR 2017

x
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Figure 1: General nonlinear transform coding framework (Ballé, Laparra, and Simoncelli, 2016). A
vector of image intensities x ∈ RN is mapped to a latent code space via a parametric analysis trans-
form, y = ga(x;φ). This representation is quantized, yielding a discrete-valued vector q ∈ ZM
which is then compressed. The rate of this discrete code, R, is lower-bounded by the entropy of
the discrete probability distribution of the quantized vector, H[Pq]. To reconstruct the compressed
image, the discrete elements of q are reinterpreted as a continuous-valued vector ŷ, which is trans-
formed back to the data space using a parametric synthesis transform x̂ = gs(ŷ;θ). Distortion is
assessed by transforming to a perceptual space using a (fixed) transform, ẑ = gp(x̂), and evaluating
a metric d(z, ẑ). We optimize the parameter vectors φ and θ for a weighted sum of the rate and
distortion measures, R+ λD, over a set of images.

tion. For example, JPEG uses a discrete cosine transform on blocks of pixels, and JPEG 2000 uses a
multi-scale orthogonal wavelet decomposition. Typically, the three components of transform coding
methods – transform, quantizer, and entropy code – are separately optimized (often through manual
parameter adjustment).

We have developed a framework for end-to-end optimization of an image compression model based
on nonlinear transforms (figure 1). Previously, we demonstrated that a model consisting of linear–
nonlinear block transformations, optimized for a measure of perceptual distortion, exhibited visually
superior performance compared to a model optimized for mean squared error (MSE) (Ballé, La-
parra, and Simoncelli, 2016). Here, we optimize for MSE, but use a more flexible transforms built
from cascades of linear convolutions and nonlinearities. Specifically, we use a generalized divisive
normalization (GDN) joint nonlinearity that is inspired by models of neurons in biological visual
systems, and has proven effective in Gaussianizing image densities (Ballé, Laparra, and Simoncelli,
2015). This cascaded transformation is followed by uniform scalar quantization (i.e., each element
is rounded to the nearest integer), which effectively implements a parametric form of vector quan-
tization on the original image space. The compressed image is reconstructed from these quantized
values using an approximate parametric nonlinear inverse transform.

For any desired point along the rate–distortion curve, the parameters of both analysis and synthesis
transforms are jointly optimized using stochastic gradient descent. To achieve this in the presence
of quantization (which produces zero gradients almost everywhere), we use a proxy loss function
based on a continuous relaxation of the probability model, replacing the quantization step with
additive uniform noise. The relaxed rate–distortion optimization problem bears some resemblance
to those used to fit generative image models, and in particular variational autoencoders (Kingma and
Welling, 2014; Rezende, Mohamed, and Wierstra, 2014), but differs in the constraints we impose to
ensure that it approximates the discrete problem all along the rate–distortion curve. Finally, rather
than reporting differential or discrete entropy estimates, we implement an entropy code and report
performance using actual bit rates, thus demonstrating the feasibility of our solution as a complete
lossy compression method.

2 CHOICE OF FORWARD, INVERSE, AND PERCEPTUAL TRANSFORMS

Most compression methods are based on orthogonal linear transforms, chosen to reduce correlations
in the data, and thus to simplify entropy coding. But the joint statistics of linear filter responses
exhibit strong higher order dependencies. These may be significantly reduced through the use of
joint local nonlinear gain control operations (Schwartz and Simoncelli, 2001; Lyu, 2010; Sinz and
Bethge, 2013), inspired by models of visual neurons (Heeger, 1992; Carandini and Heeger, 2012).
Cascaded versions of such models have been used to capture multiple stages of visual transformation

2

[Ballé et al., 2017] “End-to-end optimized image compression”, International Conference on Learning Representations.
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End-to-End Learned Video Codecs
DVC [Lu et al., 2019] was the first end-to-end deep video compression model.

Replaces the conventional video coding framework with several neural networks.

Achieves a performance similar to x265 (veryfast preset).

Source of figures: [Lu et al., 2019] Lu et al., “DVC: An end-to-end deep video compression framework”, IEEE/CVF CVPR, 2019.
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Deep Contextual Video Compression (DCVC)

A series of neural video codecs that offer similar RQ performance to standard video codecs.

Shift from a residue coding - to a conditional coding-based framework.

Commonly-used residue coding-based 
video compression 

Our deep contextual 
video compression 

ො𝑥𝑡−1

Prediction

DecEnc

Residue coding
𝑥𝑡 ො𝑥𝑡

ො𝑥𝑡−1

Context 
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DecEnc

Conditional coding
𝑥𝑡 ො𝑥𝑡

෤𝑥𝑡: predicted frame in RGB domain ҧ𝑥𝑡: context in feature domain

Figure 1: Paradigm shift from residue coding-based framework to conditional coding-based frame-
work. xt is the current frame. x̂t and x̂t−1 are the current and previous decoded frames. The orange
dashed line means that the context is also used for entropy modeling.

condition can be anything that may be helpful to compress the current frame. The predicted frame
can be used as condition but it is not necessary to restrict it as the only representation of condition.
Thus, we define the condition as learnable contextual features with arbitrary dimensions. Along this
idea, we propose a deep contextual video compression (DCVC) framework to utilize condition in
a unified, simple, yet efficient approach. The diagram of our DCVC framework is shown in Fig. 1.
The contextual information is used as part of the input of contextual encoder, contextual decoder,
as well as the entropy model. In particular, benefiting from the temporal prior provided by context,
the entropy model itself is temporally adaptive, resulting in a richer and more accurate model. As
for how to learn condition, we propose using motion estimation and motion compensation (MEMC)
at feature domain. The MEMC can guide the model where to extract useful context. Experimental
results demonstrate the effectiveness of the proposed DCVC. For 1080p standard test videos, our
DCVC can achieve 26.0% bitrate saving over x265 using veryslow preset, and 16.4% bitrate saving
over previous SOTA DL-based model DVCPro [4].

Actually, the concept of conditional coding has appeared in [15, 16, 12, 17]. However, these works
are only designed for partial module (e.g., only entropy model or encoder) or need handcrafted
operations to filter which content should be conditionally coded. By contrast, our framework is a
more comprehensive solution which considers all of encoding, decoding, and entropy modeling.
In addition, the proposed DCVC is an extensible conditional coding-based framework, where the
condition can be flexibly designed. Although this paper proposes using feature domain MEMC to
generate contextual features and demonstrates its effectiveness, we still think it is an open question
worth further investigation for higher compression ratio.

Our main contributions are four-folded:

• We design a deep contextual video compression framework based on conditional coding.
The definition, usage, and learning manner of condition are all innovative. Our method can
achieve higher compression ratio than previous residue coding-based methods.

• We propose a simple yet efficient approach using context to help the encoding, decoding,
as well as the entropy modeling. For entropy modeling, we design a model which utilizes
spatial-temporal correlation for higher compression ratio or only utilizes temporal correlation
for fast speed.

• We define the condition as the context in feature domain. The context with higher dimensions
can provide richer information to help reconstruct the high frequency contents.

• Our framework is extensible. There exists great potential in boosting compression ratio by
better defining, using, and learning the condition.

2 Related works

Deep image compression Recently there are many works for deep image compression. For exam-
ple, the compressive autoencoder [18] could get comparable results with JPEG 2000. Subsequently,
many works boost the performance by more advanced entropy models and network structures. For

2

Source of figure: [Li et al., 2021] “Deep contextual video compression”, NeurIPS.
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DCVC Codecs
DCVC-DC: diverse contexts [Li et al., 2023] - better than ECM LD (RGB).

DCVC-FM: feature modulation [Li et al., 2024] - better than ECM LD (RGB and YUV) .

DCVC-LCG: long-term temporal context gathering [Qi et al., 2024] - 11.3% better than ECM LD (YUV).2 Linfeng Qi et al.

𝑥𝑡: Frame (Input) ො𝑥𝑡: Frame (Reconstructed) ො𝑣𝑡: Motion (Reconstructed) 𝐹𝑡: Reference Feature 𝐶𝑡: Temporal Context

(a) Previous methods (b) Our DCVC-LCG

Frame 
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𝑥𝑡−1
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Generation

Frame 
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𝐶𝑡−1

Short-term feature propagation

ො𝑣𝑡 𝑥𝑡

𝐹𝑡−1 𝐶𝑡 𝐹𝑡 Frame 
coding

𝑥𝑡𝑙
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Frame 
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𝐶𝑡𝑙

ො𝑣𝑡 𝑥𝑡

𝐶𝑡 𝐹𝑡𝐹𝑡𝑙 … Frame 
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𝐹t−1𝐶𝑡−1

Short-term feature propagation with long-term temporal context gathering 

ො𝑥𝑡𝑙 ො𝑥𝑡−1 ො𝑥𝑡ො𝑥𝑡−1 ො𝑥𝑡

𝑥𝑡−1

Long-term 
Temporal Context 

Gathering

Fig. 1: Framework comparison. We gather the long-term temporal context with the
continuously propagated short-term temporal context for more diverse and effective
temporal context learning. The motion between xt and x̂t−1 is estimated, encoded,
transmitted, and then decoded as v̂t. This process is omitted for simplicity.

video codecs, such as H.265 [57], H.266 [11], and the under-developing next
generation codec ECM [1], rely on block-wise motion-compensated prediction
to reduce the temporal redundancy. The best match in the reference blocks is
searched to produce the motion vector, which is then transmitted for motion
compensation. However, their utilization of temporal context is constrained by
numerous hand-crafted rules, resulting in sub-optimal performance.

By contrast, the emerging neural video codecs (NVCs) emphasize the tempo-
ral context learning process through data-driven optimization, offering greater
flexibility than hand-crafted rules. However, most existing NVCs only utilize
short-term temporal context through optical flow-based motion compensation.
The early work DVC [43] estimates the pixel-wise optical flow between the adja-
cent frames. The optical flow is then used for warping the previous decoded frame
as the motion compensation. Subsequent studies introduce more powerful sub-
modules or mechanisms to further enhance this framework, including multiple
reference frames [37], deformable alignment [22] and ensembled predictions [46].
Recent NVCs employ high-dimensional feature propagation [18,33–35,53,56,67]
to capture the temporal correlation.

However, as shown in Fig. 1 (a), most existing NVCs solely utilize short-
term temporal context for coding, which limits their capabilities in reducing
the temporal redundancy. On the one hand, the short-term temporal context
may accumulate errors or uncorrelated information over a long prediction chain.
On the other hand, it confines the diversity of context generation to a short
time range, ignoring the non-local correlation. For this reason, we emphasize the
importance of long-term temporal context, and enable the complementarity of
long-term and short-term temporal context for a holistic context mining. Inspired
by the long-term reference picture mechanism [36, 39, 52, 58, 62] in traditional
codecs, we design a Long-term temporal Context Gathering (LCG) module, as
shown in Fig. 1 (b). Through searching the relevant context from the long-term
reference feature, more helpful and diverse temporal context from long distance
can be exploited. In addition, the long-term reference feature is less susceptible
to error propagation and maintains higher quality information. The searched

Source of figure: [Qi et al., 2024] “Long-term Temporal Context Gathering for Neural Video Compression”, ECCV.
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Limitations of AI-based Video Coding Methods

Coding performance
Reported results for (most) learned video codecs are not based on standard CTCs.

Conventional video codecs (RA mode) still lead in performance.

Complexity Issues
Pre-trained generic models typically require large model capacity.

This leads to significantly increased (decoding) complexity and large model sizes.

Non-standard pipelines
Existing neural video codecs adopt diverse pipelines/network architectures.

Compatibility is essential in video coding (standardisation) and convergence is required.
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Conventional and Learned Video Codecs - Benchmarking

Configuration: low delay, YUV420 and JVET/AOM test sequences.

Hardware: PC with single CPU (Intel i7-12700) and GPU (NVIDIA 3090).

BD-rate BD-rate Encoding Decoding
(PSNR) (VMAF) time time

libaom 0% 0% 1× 1×
DCVC-DC -11.2% -31.1% 0.008× 13.180×
VTM-LDP -13.4% -18.2% 1.032× 2.723×
VTM-LDB -19.2% -22.5% 1.502× 2.675×
DCVC-FM -20.8% -33.1% 0.012× 20.735×

AVM -21.4% -25.6% 12.301× 2.246×
ECM-LDP -29.0% -30.4% 10.704× 21.394×
ECM-LDB -33.9% -34.2% 16.106× 21.725×

EncTimeDecTime

BD-rate
(%, PSNR)

BD-rate
(%, VMAF)

15x

10x

-20

-30

-20

-30

1x

0.01x

VTM-LDB
ECM-LDB
libaom
AVM
DCVC-DC
DCVC-FM

[Teng et al., 2024] “Benchmarking Conventional and Learned Video Codecs with a Low-Delay Configuration.”, IEEE VCIP.
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When will AI-based Methods be Acceptable?

Architecture and Complexity reduction
Significant complexity reduction, especially at the decoder.

Performance should be maintained with low-complexity models.

Architectural convergence for standardisation.

Coding gains
More significant and consistent coding gains over best standard codecs (ECM/AVM).

Rate quality optimisation
Exploitation of perceptual redundancy during coding.

Better quality assessment methods and loss functions.
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Model Compression and Knowledge Distillation - e.g. ISR
Model complexity can be significantly reduced by model compression.

Model performance after compression can be further improved through knowledge distillation.
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[Jiang et al., 2024c] “Compressing deep image super-resolution models”, PCS.
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MTKD: Multi-Teacher Knowledge Distillation
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[Jiang et al., 2024a] “MTKD: multi-teacher knowledge distillation for image super-resolution”, ECCV.
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MTKD: Results
SwinIR vs SwinIR_lightweight [Liang et al., 2021] (90% complexity reduction)

HR
PSNR/SSIM

Full
24.81/.7928

Compact
24.20/.7542

MT
24.93/.7865

KD
24.19/.7533

AT
24.19/.7530

FAKD
24.14/.7526

MTKD (Ours)
24.34/.7622
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RTSR: Real-Time SR for Compressed Content
Extend from image super-resolution to video compression (AV1).
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[Jiang et al., 2024b] “RTSR: A Real-Time Super-Resolution Model for AV1 Compressed Content”, submitted to ISCAS 2025.
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End-to-end Learned Video Codecs: Complexity Reduction
1. The multi-stage optimisation of learnt video codecs vs the global pruning objectives.

2. Split the distillation of sub-modules into multi-stages to regularise the student model.

z
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[Peng et al., 2024] “Accelerating learnt video codecs with gradient decay and layer-wise distillation.”, PCS.
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Evaluation Results - Complexity vs Performance
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Motion Models in Video Compression

Accurate motion estimation is key in exploiting the temporal redundancy within videos.

Video frame interpolation techniques offer potential solutions for improved motion modelling.
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Perceptually-oriented VFI: LDMVFI

L1/L2/VGG loss does not correlate with VFI perceptual quality.

Diffusion models have shown remarkable performance in generating perceptually-optimised images.

We tailor latent diffusion models for VFI to achieve superior perceptual quality.

Forward Diffusion

C
o
n
ca

t.

C

Denoising U-Net

Conditional Generation Process

[Danier et al., 2024] “LDMVFI: Video Frame Interpolation with Latent Diffusion Models”, AAAI.
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LDMVFI: Performance
Middlebury UCF-101 DAVIS VFITex RT

(sec)
#P
(M)LPIPS↓ FloLPIPS↓ FID↓ LPIPS↓ FloLPIPS↓ FID↓ LPIPS↓ FloLPIPS↓ FID↓ LPIPS↓ FloLPIPS↓ FID↓

BMBC 0.023 0.037 12.974 0.034 0.045 33.171 0.125 0.185 15.354 0.220 0.282 50.393 0.51 11.0
AdaCoF 0.031 0.052 15.633 0.034 0.046 32.783 0.148 0.198 17.194 0.204 0.273 42.255 0.01 21.8
IFRNet 0.020 0.039 12.256 0.032 0.044 28.803 0.114 0.170 14.227 0.200 0.273 42.266 0.02 5.0
VFIformer 0.031 0.065 15.634 0.039 0.051 34.112 0.191 0.242 21.702 OOM OOM OOM 1.74 5.0
ST-MFNet N/A N/A N/A 0.036 0.049 34.475 0.125 0.181 15.626 0.216 0.276 41.971 0.14 21.0
FLAVR N/A N/A N/A 0.035 0.046 31.449 0.209 0.248 22.663 0.234 0.295 56.690 0.02 42.1
MCVD 0.123 0.138 41.053 0.155 0.169 102.054 0.247 0.293 28.002 OOM OOM OOM 52.55 27.3

LDMVFI 0.019 0.044 16.167 0.026 0.035 26.301 0.107 0.153 12.554 0.150 0.207 32.316 8.48 439.0

[Video] Visual comparison between different VFI models.

Overlayed Inputs BMBCGT VFIformer IFRNet ST-MFNet LDMVFI (Ours)

https://fan-aaron-zhang.github.io/videos/ldmvfi_demo_short.mp4
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Advanced Representation Models

Existing end-to-end learned video codecs suffer from high computational complexity.

Amortised inference: hyperparameters are fixed and shared across diverse contents.

Therefore more sophisticated architectures are required.

Motion
Model

Rep. EC

Motion
Model

Rep.ED

Quality of User
Experience

NR Model Quality
Score

FR Loss 

params

B
it

st
re

am

Quality
Assessment

P
rep

rocessin
g

E
n

h
an

cem
en

t



49/67

Neural Representation for Videos (NeRV)
Implicit Neural Representations offer a promising solution, overfitting the content during learning.

Neural Radiance Field (NeRF): f : f (x , y , z ,θ,ϕ) = (r , g , b,σ).

Neural Representation for Videos (NeRV): f : f (x , y , t) = (r , g , b).

NeRV-based video codecs can offer very fast decoding speed.

However, existing INR models (e.g., NeRV [Chen et al., 2021] and HNeRV [Chen et al., 2023]) are not
competitive against standard or other E2E learned codecs.

Souce of figure: [Chen et al., 2021] “NeRV: Neural representations for videos”, NeurIPS.
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HiNeRV: Hierarchical Encoding-based Neural Representation

A new upsampling layer with bilinear interpolation and hierarchical encoding of feature grids.

A unified representation of frame- and patch-wise INR by adding padding for acceleration.

A refined training pipeline, with pruning- & quantisation-aware fine-tuning.

[Kwan et al., 2023] “Video Compression with Hierarchical Encoding-based Neural Representation”, NeurIPS.
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HiNeRV: Performance
HiNeRV is the first INR-based codec that outperforms HEVC x265 (veryslow).

It also outperforms existing NeRV-based video codecs with up to 70% bit rate-savings.

and offers fast decoding speed - up to 35FPS.

Dataset Metric x265 (veryslow) HM (RA) DCVC DCVC-HEM VCT NeRV HNeRV

UVG
PSNR -38.66% 7.54% -43.44% 25.23% -34.28% -74.12% -72.29%
MS-SSIM -62.70% -41.41% -34.50% 49.03% -23.69% -73.76% -83.86%

MCL-JCV
PSNR -23.39% 31.09% -24.59% 35.83% -17.03% -80.19% -66.56%
MS-SSIM -44.12% -2.65% -17.32% 80.73% 12.10% -82.28% -79.42%
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Improving Quantisation and Entropy Coding

Quantization creates lossy representations of input videos.

Accurate entropy modelling is also key to high compression ratios.
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NVRC: Neural Video Representation Compression

Figure 2: In NVRC, the parameters are encoded in a hierarchical structure, where (Middle-left)
per-block quantization scales and (bottom-left) context-based model are utilized for encoding feature
grids, and (Middle-right and bottom-right) per-axis quantization scales and dual-axis Gaussian model
are applied for encoding network layer parameters.

distribution of the representation parameters θ in a fine-grained manner, e.g., per-group quantization132

scales, and can be considered as side information in compression [6]. While these parameters do133

improve overall coding efficiency, the introduced overhead is not negligible. Therefore ϕ is also134

quantized in this work, denoted as ϕ̂ = {ϕ̂quant, ϕ̂em}, and entropy coded. Here the quantization and135

entropy coding are performed based on another set of learnable parameters ψ = {ψquant, ψem}, and136

can be simply quantized into full/half precision as ψ̂ = {ψ̂quant, ψ̂em}. This forms a hierarchical137

coding strategy for encoding these model and compression parameters θ, ϕ and ψ, as illustrated in138

Figure 2.139

All these parameters are optimized in a fully end-to-end manner based on a rate-distortion objective.140

Here the distortion metric D, e.g., mean-square-error (MSE), is calculated between a reconstructed141

video patch, Vpatch = Fθ̂(i, j, k), and the corresponding target video patch V gtpatch. The rate R is142

based on the number of bits consumed by the three levels of quantized parameters θ̂, ϕ̂, ψ̂.143

3.1 Feature grid coding144

Although employing feature grids [10, 25, 24, 28, 26] for neural representations improves both145

convergence rate and reconstruction quality, these typically rely on a large number of parameters,146

which could potentially challenge model compression techniques. To address this issue, related works147

4

[Kwan et al., 2024a] “NVRC: Neural Video Representation Compression”, NeurIPS.
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NVRC: Performance
Color Space Metric x265 (veryslow) HM (RA) VTM (RA) DCVC-HEM DCVC-DC HiNeRV C3 HNeRV-Boost

RGB 4:4:4
PSNR -74.02% -51.00% -24.34% -41.30% -32.05% -50.73% -67.93% -66.78%
MS-SSIM -80.79% -67.61% -50.08% -7.91% -12.58% -44.69% - -78.21%

YUV 4:2:0
PSNR -62.71% -34.83% -1.03% - -62.28% - - -
MS-SSIM -59.49% -38.45% -15.38% - -70.23% - - -

Table 1: BD-rate results on the UVG dataset.
Color Space Metric x265 (veryslow) HM (RA) VTM (RA) DCVC-HEM DCVC-DC HiNeRV C3 HNeRV-Boost

RGB 4:4:4 PSNR -74.02% -51.00% -24.34% -41.30% -32.05% -50.73% -67.93% -66.78%
MS-SSIM -80.79% -67.61% -50.08% -7.91% -12.58% -44.69% - -78.21%

YUV 4:2:0 PSNR -62.71% -34.83% -1.03% - -62.28% - - -
MS-SSIM -59.49% -38.45% -15.38% - -70.23% - - -

Figure 3: Average rate quality curves of various tested codecs on the UVG datasets.

INR-based codecs, including the original HiNeRV [25], C3 [24] and HNeRV-Boost [58] have also284

been included in this experiment. All results are produced by the open source implementations,285

except for those of C3, which are obtained from the original paper.286

Evaluation methods. The evaluation was performed in the RGB color space (for comparing both287

conventional codecs and learning-based methods) with the BT.601 color conversion, and in the288

original YUV420 color space (for comparing both conventional methods and the learning-based289

methods that support this feature in their public implementations). PSNR and MS-SSIM are used290

here to assess video quality, based on which Bjøntegaard Delta Rate figures are calculated against291

each benchmark codec.292

4.2 Results and discussion293

Figure 3 and Table 1 provide the results for the proposed NVRC model and the benchmark methods.294

It can be observed that when tested in the RGB 4:4:4 color space (as in many learning-based works),295

NVRC significantly outperforms the original HiNeRV model, with an average coding gain of 50.73%,296

measured by PSNR. Similar improvement has also been achieved against other INR-based methods297

including HNeRV-Boost and C3. Moreover, NVRC also offers better performance compared to latest298

MPEG standard codec VVC VTM (Random-Access), with a 24% average coding gain based on PSNR.299

To the best of our knowledge, it is the first INR-based video codec outperforming VTM. Compared300

to state-of-the-art learned video coding methods, NVRC also exhibits superior performance, beating301

DCVC-DC and DCVC-HEM. When evaluated in the YUV 4:2:0 color space, NVRC still offers302

superior performance as for RGB 4:4:4 color space, outperforming most benchmarked methods based303

on PSNR and MS-SSIM. It should be also noted that INR-based video codecs do not require offline304

training on large-scale datasets, whereas other learning-based methods do. Qualitative results are305

provided in Figure 1 in terms of visual comparison between the content reconstructed by NVRC and306

HiNeRV.307

4.3 Computational complexity308

The complexity figures of NVRC are provide in Table 2. When compared to the original HiNeRV,309

the proposed method (with HiNeRV as its INR network) is associated with increased computational310

complexity. However, the MACs is still significantly lower than that of other learning-based video311

codecs (e.g., DCVC-DC [31]), which allows faster decoding. It should be noted that the complexity312

figures shown here are obtained based on research source code that has not been optimized for313

latency. The actual latency of INR and entropy coding can be further reduced by (1) optimizing the314

implementation of the INR and entropy models, (2) performing lower precision computation, and (3)315

implementing parallel decoding between different resolution feature grids.316

8

[VIDEO] Visual Comparison between HM and NVRC.

https://fan-aaron-zhang.github.io/videos/nvrc_demo3_new.mp4
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PNVC: Towards Practical Neural Video Compression

INR-based video codecs typically represent an entire video or a dataset with a single monolithic model.

This requires processing a large number of frames in each encoding, resulting in a high system latency.

PNVC: a practical neural video coding framework, enabling flexible coding configurations (LD and RA).

[Gao et al., 2025] “PNVC: Towards Practical INR-based Video Compression”, AAAI.
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PNVC: Performance
Well-rounded performance across multiple dimensions.

5%+ gain over VTM (LD) in PSNR and MS-SSIM.

10%+ gain over HiNeRV in PSNR and MS-SSIM.

20+FPS decoding speed for HD (1080P).

Flexible coding/delay configurations (LD and RA).
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MV-HiNeRV - Extending HiNeRV to Immersive Videos

MV-HiNeRV [Kwan et al., 2024b] extends HiNeRV to the compression of immersive/volumetric videos.

It learns hierarchical feature grids per view, and shares the learned network parameters among all views.

This enables the model to effectively exploit the spatio-temporal and the inter-view redundancy.

MV-HiNeRV has achieved significant coding gains (up to 72.33%) over MPEG TMIV (based on VVenc).

HiNeRV MV-HiNeRV
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MV-HiNeRV: Performance
BD-rate (%) B02 D01 E01 J02 J04 W01 Overall

PSNR -17.60 -65.93 -36.59 -59.96 -80.03 -35.48 -49.27

IV-PSNR -38.11 -61.08 -6.28 -70.21 -72.33 -33.50 -46.92

[Kwan et al., 2024b] “Immersive Video Compression using Implicit Neural Representations”, PCS.
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Summary and Future Work
Learning-based video coding: Hope or Hype?

Deep learning has made important contributions to video compression and quality assessment.

But significant issues remain include coding performance, complexity, and non-standard pipelines.

Generative methods: enable super-resolution and motion interpolation tools for near term advances.

INR-based frameworks: potential for the best trade-off between complexity, performance and practicality.

Complexity reduction: enabled by model compression and knowledge distillation.

Future work
Performance: demonstrate significant coding gains over ECM/AVM with lower model complexity.

Evaluation: new metrics and benchmarking methods to compare techniques with varying performance
characteristics, consistency and artefacts.

Convergence: stable architectures to drive investment in standards and hardware.

Compatibility: with low cost integrated hardware: NPU and TPU acceleration.

Datasets: relevant, diverse and extensive,
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